Intel Optane And The DAOS Storage Engine

Disclaimer: I recently attended Storage Field Day 20.  My flights, accommodation and other expenses were paid for by Tech Field Day. There is no requirement for me to blog about any of the content presented and I am not compensated in any way for my time at the event.  Some materials presented were discussed under NDA and don’t form part of my blog posts, but could influence future discussions.

Intel recently presented at Storage Field Day 20. You can see videos of the presentation here, and download my rough notes from here.

 

Intel Optane Persistent Memory

If you’re a diskslinger, you’ve very likely heard of Intel Optane. You may have even heard of Intel Optane Persistent Memory. It’s a little different to Optane SSD, and Intel describes it as “memory technology that delivers a unique combination of affordable large capacity and support for data persistence”. It looks a lot like DRAM, but the capacity is greater, and there’s data persistence across power losses. This all sounds pretty cool, but isn’t it just another form factor for fast storage? Sort of, but the application of the engineering behind the product is where I think it starts to get really interesting.

 

Enter DAOS

Distributed Asynchronous Object Storage (DAOS) is described by Intel as “an open source software-defined scale-out object store that provides high bandwidth, low latency, and high I/O operations per second (IOPS) storage containers to HPC applications”. It’s ostensibly a software stack built from the ground up to take advantage of the crazy speeds you can achieve with Optane, and at scale. There’s a handy overview of the architecture available on Intel’s website. Traditional object (and other storage systems) haven’t really been built to take advantage of Optane in quite the same way DAOS has.

[image courtesy of Intel]

There are some cool features built into DAOS, including:

  • Ultra-fine grained, low-latency, and true zero-copy I/O
  • Advanced data placement to account for fault domains
  • Software-managed redundancy supporting both replication and erasure code with online rebuild
  • End-to-end (E2E) data integrity
  • Scalable distributed transactions with guaranteed data consistency and automated recovery
  • Dataset snapshot capability
  • Security framework to manage access control to storage pools
  • Software-defined storage management to provision, configure, modify, and monitor storage pools

Exciting? Sure is. There’s also integration with Lustre. The best thing about this is that you can grab it from Github under the Apache 2.0 license.

 

Thoughts And Further Reading

Object storage is in its relative infancy when compared to some of the storage architectures out there. It was designed to be highly scalable and generally does a good job of cheap and deep storage at “web scale”. It’s my opinion that object storage becomes even more interesting as a storage solution when you put a whole bunch of really fast storage media behind it. I’ve seen some media companies do this with great success, and there are a few of the bigger vendors out there starting to push the All-Flash object story. Even then, though, many of the more popular object storage systems aren’t necessarily optimised for products like Intel Optane PMEM. This is what makes DAOS so interesting – the ability for the storage to fundamentally do what it needs to do at massive scale, and have it go as fast as the media will let it go. You don’t need to worry as much about the storage architecture being optimised for the storage it will sit on, because the folks developing it have access to the team that developed the hardware.

The other thing I really like about this project is that it’s open source. This tells me that Intel are both focused on Optane being successful, and also focused on the industry making the most of the hardware it’s putting out there. It’s a smart move – come up with some super fast media, and then give the market as much help as possible to squeeze the most out of it.

You can grab the admin guide from here, and check out the roadmap here. Intel has plans to release a new version every 6 months, and I’m really looking forward to seeing this thing gain traction. For another perspective on DAOS and Intel Optane, check out David Chapa’s article here.

 

 

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.